Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jesús Valdés-Martínez,* Simón Hernández-Ortega and Victor Bautista Jimenez

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, DF, Mexico

Correspondence e-mail:
jvaldes@servidor.unam.mx

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.042$
$w R$ factor $=0.110$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Ammine[2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonato]nickel(II)

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}\right)\left(\mathrm{NH}_{3}\right)\right]$, the Ni atom is in a distorted square-planar geometry, with the 2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonate ligand coordinated in a terdentate manner through the S, N and O atoms. A molecule of ammonia completes the coordination.

Comment

The Ni atom in the title compound, (I), exhibits a coordination number of four. The 2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonate ligand has a charge of $2-$ and acts as a terdentate ligand, coordinating to the $\mathrm{Ni}^{\mathrm{II}}$ ion via the thiolate S , the azomethine N and the naphthoxy O atom. The ammonia molecule coordinates in the fourth position. The coordination geometry is distorted square planar, as indicated by the distances and angles around the metal ion. The coordinated thiosemicarbazone ligand is almost planar and the angle between the Ni1-S1-N1-N2-C12 and Ni1$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$ chelate rings is $3.9(1)^{\circ}$. The angle between the $\mathrm{Ni} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12$ chelate ring and the mean plane of the naphthalene rings is $9.4(1)^{\circ}$. The piperidyl ring is in a chair conformation. A pair of intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Table 2), involving the ammonia $\mathrm{H} 4 B$ atom and the O atom of the coordinated thiosemicarbazone ligand, link molecules into centrosymmetric dimers.

(I)

Experimental

4-Piperidylthiosemicarbazide was prepared following a reported procedure (Scovill, 1991). The ligand 2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazone (L) was obtained from a $1: 1$ molar ratio of 2-hydroxy-1-naphthaldehyde (Aldrich) and 4-piperidylthiosemicarbazide in boiling ethanol containing 2-3 drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Compound (I) was prepared from L and nickel(II) nitrate hexahydrate (Aldrich) in a $1: 1$ molar ratio in a boiling methanol-ammonia solution. Crystals of (I) were obtained by slow evaporation, at room temperature, of the reaction mixture.

Received 30 October 2002
Accepted 6 November 2002
Online 15 November 2002

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}\right)\left(\mathrm{NH}_{3}\right)\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.506 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 39 \\
& \quad \text { reflections } \\
& \theta=2.9-12.5^{\circ} \\
& \mu=1.27 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Plate, red } \\
& 0.46 \times 0.16 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 4 / P C$ diffractometer ω scans
Absorption correction: analytical based on measured indexed crystal faces (SHELXTL; Sheldrick, 1997b)
$T_{\text {min }}=0.770, T_{\text {max }}=0.915$
3219 measured reflections 3018 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.110$
$S=1.00$
3018 reflections
226 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The crystal packing of (I).
calculated positions $(\mathrm{C}-\mathrm{H} 0.93-0.97 \AA)$, and refined using a riding model, with fixed displacement parameters $\left(U_{\text {iso }}=1.2 U_{\text {eq }}\right.$ of the atom to which they are bonded).

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: $S H E L X T L / P C$ (Sheldrick 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: PLATON (Spek, 1999) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and PLATON.

We acknowledge the Universidad Nacional Autónoma de México for support of this research.

References

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Scovill, J. P. (1991). Phosphorus Sulfur Silicon, 60, 15-19.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL/PC. Version 5.101. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.

